Analysis done with 10,000 signal M.C. events produced by evtgen

Analysis updates:

- *cc mode of* $D^0 \rightarrow K_S \pi^0$ *added*
- *Improvement in fitting in* $D^0 \rightarrow K_S \pi^0$
- *New result from* $D^0 \rightarrow K_L \pi^0$
$D^0/\bar{D}^0 \rightarrow K_S \pi^0$

Reconstruction Procedure:

- π^0 made from mdstpi0
- π^\pm made from mdstcharged
- K_S made from mdstvee2
 - track, kind and mass cut ($0.486\text{GeV} < M_{K_S} < 0.510\text{GeV}$)
- D^0/\bar{D}^0 made from K_S and π^0
 - flavour of D^0 tagged by charge of π_{slow}
 - mass cut ($1.75\text{GeV} < M_{D^0} < 1.90\text{GeV}$)
- $D^{*\pm}$ made from D^0/\bar{D}^0 and π_{slow}^\pm
signal region is defined by
\[0.144 < \delta M = M_{D^{*\pm}} - M_{D^0}/M_{\bar{D}^0} < 0.147 \]
Reconstructing $D^0 / \bar{D}^0 \rightarrow K_S \pi^0$
Reconstructing $D^0/\bar{D}^0 \rightarrow K_S\pi^0$ conti....

\begin{align*}
\text{D0 mass} & \quad \text{D0 mass after mass cut} \\
\text{D0 to K0S Pi0, D0bar to K0S Pi0 and D0+D0bar to K0S Pi0} & \\
\text{D0 mass} & \quad \text{D0 mass after mass cut}
\end{align*}
Reconstructing $D^0/\bar{D}^0 \rightarrow K_S\pi^0$ conti....
\[D^0/\bar{D}^0 \rightarrow K_S\pi^0 \text{ continues...} \]

Fitting Procedure:

- fitting functions has changed and improvement made

- \(M_{K_S} \) distribution before cut on \(M_{K_S} \) fitted as follows
 - background fitted to 1st order polynomial
 offset fixed at 0.4700
 - signal fitted to ’Double Gaussian’

- \(M_{D^0} \) distribution before cut on \(M_{D^0} \) fitted as follows
 - background fitted to falling exponential
 offset fixed at 1.5
 - signal fitted to ’Crystal Ball’ function
• δM distribution before cut on δM fitted as follows

 - background fitted to threshold function
 offset fixed at $M_{\pi^+} = 0.13957 GeV$
 - signal fitted to 'Double Gaussian'
Fitting M_{K_S}

MINUIT χ^2 Fit to Plot 10a.0

- K0S mass
- Fit: vert. watch
- Plot Area Total/Fit 11084 / 11584
- C.L. = 55.2%
- $\chi^2 = 10.7$ for 20 - 8 d.o.f.

Function 1: Polynomial of Order 1
- AREA 5458.3
- MEAN 0.47000
- DELM -0.74568E-05
- SIG2/509.0 2.4859

Function 2: Two Gaussians (sigma)
- AREA 5458.3
- MEAN 0.47000
- DELM -0.74568E-05
- SIG2/509.0 2.4859

MINUIT χ^2 Fit to Plot 12a.0

- K0S mass
- File: vert. watch
- Plot Area Total/Fit 11468 / 11468
- C.L. = 56.7%
- $\chi^2 = 10.6$ for 20 - 8 d.o.f.

Function 1: Polynomial of Order 1
- AREA 5458.3
- MEAN 0.47000
- DELM -0.74568E-05
- SIG2/509.0 2.4859

Function 2: Two Gaussians (sigma)
- AREA 5458.3
- MEAN 0.47000
- DELM -0.74568E-05
- SIG2/509.0 2.4859

MINUIT χ^2 Fit to Plot 14a.0

- K0S mass
- File: vert. watch
- Plot Area Total/Fit 23076 / 23076
- C.L. = 34.3%
- $\chi^2 = 13.4$ for 20 - 8 d.o.f.

Function 1: Polynomial of Order 1
- AREA 5458.3
- MEAN 0.47000
- DELM -0.74568E-05
- SIG2/509.0 2.4859

Function 2: Two Gaussians (sigma)
- AREA 5458.3
- MEAN 0.47000
- DELM -0.74568E-05
- SIG2/509.0 2.4859
Fitting $M_{D^0}/M_{ar{D}^0}$

<table>
<thead>
<tr>
<th>MINUIT χ^2 Fit to Plot</th>
<th>20&0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 mass File: ver1.mn.hbk 19-OCT-2004 03:38</td>
<td></td>
</tr>
<tr>
<td>Plot Area Total/Fit 5020.0 / 9250.0</td>
<td></td>
</tr>
<tr>
<td>Fit Status 3 E.D.M. 3.91E-06</td>
<td></td>
</tr>
<tr>
<td>χ^2 = 16.0 for 30 - 7 d.o.f. C.L. = 85.6%</td>
<td></td>
</tr>
<tr>
<td>Errors Function 1: Exponential</td>
<td>Parabolic Minos</td>
</tr>
<tr>
<td>SLOPE 1.6000</td>
<td>7.43E-02</td>
</tr>
<tr>
<td>OFFSET 1.0000</td>
<td>0</td>
</tr>
<tr>
<td>Function 2: CB Line Shape</td>
<td></td>
</tr>
<tr>
<td>AREA 1.0000</td>
<td>118.8</td>
</tr>
<tr>
<td>MEAN 1.0000</td>
<td>7.115E-04</td>
</tr>
<tr>
<td>SIGMA 1.0000</td>
<td>8.077E-02</td>
</tr>
<tr>
<td>ALPH 0.0000</td>
<td>8.207E-02</td>
</tr>
<tr>
<td>N 4.0731</td>
<td>2.264</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINUIT χ^2 Fit to Plot</th>
<th>22&0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 mass File: ver1.mn.hbk 19-OCT-2004 03:38</td>
<td></td>
</tr>
<tr>
<td>Plot Area Total/Fit 5010.0 / 9133.0</td>
<td></td>
</tr>
<tr>
<td>Fit Status 3 E.D.M. 3.78E-06</td>
<td></td>
</tr>
<tr>
<td>χ^2 = 25.4 for 30 - 7 d.o.f. C.L. = 62.0%</td>
<td></td>
</tr>
<tr>
<td>Errors Function 1: Exponential</td>
<td>Parabolic Minos</td>
</tr>
<tr>
<td>SLOPE 1.6000</td>
<td>7.43E-02</td>
</tr>
<tr>
<td>OFFSET 1.0000</td>
<td>0</td>
</tr>
<tr>
<td>Function 2: CB Line Shape</td>
<td></td>
</tr>
<tr>
<td>AREA 1.0000</td>
<td>217.2</td>
</tr>
<tr>
<td>SIGMA 1.0000</td>
<td>8.66E-02</td>
</tr>
<tr>
<td>ALPH 0.7200</td>
<td>0.1149</td>
</tr>
<tr>
<td>N 2.3068</td>
<td>8.2255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MINUIT χ^2 Fit to Plot</th>
<th>24&0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 mass File: ver1.mn.hbk 19-OCT-2004 03:38</td>
<td></td>
</tr>
<tr>
<td>Plot Area Total/Fit 18383. / 18383.</td>
<td></td>
</tr>
<tr>
<td>Fit Status 3 E.D.M. 4.25E-06</td>
<td></td>
</tr>
<tr>
<td>χ^2 = 21.5 for 30 - 7 d.o.f. C.L. = 55.1%</td>
<td></td>
</tr>
<tr>
<td>Errors Function 1: Exponential</td>
<td>Parabolic Minos</td>
</tr>
<tr>
<td>SLOPE 1.6000</td>
<td>7.43E-02</td>
</tr>
<tr>
<td>OFFSET 1.0000</td>
<td>0</td>
</tr>
<tr>
<td>Function 2: CB Line Shape</td>
<td></td>
</tr>
<tr>
<td>AREA 1.0000</td>
<td>210.6</td>
</tr>
<tr>
<td>MEAN 1.0000</td>
<td>4.71E-04</td>
</tr>
<tr>
<td>SIGMA 1.50E-02</td>
<td>5.00E-04</td>
</tr>
<tr>
<td>ALPH 0.65E-02</td>
<td>0.86E-02</td>
</tr>
<tr>
<td>N 3.11E-02</td>
<td>0.99E-02</td>
</tr>
</tbody>
</table>
Results from $D^0 \rightarrow K_L \pi^0$

Two solutions for p_{KL} from D^0 mass constraint studied:

- calculated figure of merit (fom) in M_{D^*+}
 \[fom = \frac{S}{\sqrt{S+B}}, \quad S = \int_{2.006531}^{2.013471} f_s(x) \, dx, \quad B = \int_{2.006531}^{2.013471} f_b(x) \, dx \]
 \[f_s = \text{Gaussian} \quad f_b = \text{threshold function} \]

- statistics:

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Signal</th>
<th>Background</th>
<th>fom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1750.8</td>
<td>2555.4</td>
<td>26.6802</td>
</tr>
<tr>
<td>2</td>
<td>620.21</td>
<td>1602.1</td>
<td>13.1564</td>
</tr>
<tr>
<td>Both</td>
<td>2402.8</td>
<td>4123.2</td>
<td>29.7436</td>
</tr>
</tbody>
</table>
Solutions for p_{KL}

- **sol1 for K0L mom**
 - ID: 10
 - Entries: 61738
 - Mean: 5.982
 - RMS: 4.568
 - UDFLW: 0.
 - OVFLW: 7926.

- **sol2 for K0L mom**
 - ID: 20
 - Entries: 61738
 - Mean: 5.894
 - RMS: 4.540
 - UDFLW: 0.
 - OVFLW: 5661.

- **sol1 + sol2 for K0L mom**
 - ID: 30
 - Entries: 123476
 - Mean: 5.937
 - RMS: 4.554
 - UDFLW: 0.
 - OVFLW: 0.1359E+05
Results from sol1, sol2 and two sols together

- D0 to K*0 P0

- kingmass

- dzermass

D*+ mass from sol1

D*+ mass from sol2

D*+ mass from both sol
focusing $M_{D^{*+}}$ for sol1, sol2 and two sols together for calculating fom