Analysis done with 10,000 signal M.C. events produced by evtgen

Reconstruction and Fitting:

- $D^0 \rightarrow K_S \pi^0$
- $D^0 \rightarrow K_L \pi^0$
- $D^0 \rightarrow K_S \pi^+ \pi^-$
- $D^0 \rightarrow K_L \pi^+ \pi^-$
D^0 \rightarrow K_S \pi^0

Reconstruction Procedure:

- π^0 made from mdstpi0
- π^+ made from mdstcharged
 - track and kind cut
 - mass cut, $\pm 3\sigma$ of mean in M_{K_S} distribution
- D^0 made from K_S and π^0
 - mass cut, $\pm 3\sigma$ of mean in M_{D^0} distribution
- D^*^+ made from D^0 and π_s^+
- where π^+_S is π^+ - (and used in making K_S) i.e. K_S veto on π^+

- signal region is defined by

$$(0.143 < d\ell = M_{D^*_+} - M_{D^0} < 0.148)$$
Reconstructing $D^0 \rightarrow K_S^0 \pi^0$
$D^0 \rightarrow K_S \pi^0$ continues...

Fitting Procedure:

- M_{KS} distribution before mass cut fitted as follows
 - background fitted to 1st order polynomial
 offset fixed at 0.4700
 - signal fitted to Gaussian

- M_{D^0} distribution before mass cut fitted as follows
 - background fitted to falling exponential
 offset fixed at 1.1
 - signal fitted to Gaussian

- ’dm’ distribution before cut fitted as follows
- background fitted to threshold function
 offset fixed at $M_{\pi^+} = 0.13957 \text{GeV}$

- signal fitted to double Gaussian
 defines signal region for $\epsilon_{D^{*+}}$

• $M_{D^{*+}}$ distribution before mass cut fitted as follows

- background fitted to threshold function
 offset fixed at 1.9430 GeV

- signal fitted to Gaussian
Fitting M_{K_S} and M_{D_0} in $D^0 \rightarrow K_S \pi^0$

\[\chi^2 \text{ for } 55 - 5 \text{ d.o.f., C.L.}=0.735\times10^{-10} \]

Errors Parabolic Minos
Function 1: Polynomial of Order 1
NORM 1.35506E+05 = 3136. - 3141. + 3141.
OFFSET 0.47000 = 0. - 0. + 0.
Function 2: Gaussian (sigma)
AREA 5001.4 = 83.21 - 84.06 + 84.12
MEAN 0.49784 = 3.7415E-05 - 3.7992E-05 + 3.8008E-05
SIGMA 2.14743E-03 = 4.1698E-05 - 4.1631E-05 + 4.2377E-05

Errors Parabolic Minos
Function 1: Exponential
NORM 35811. = 473.6 - 464.0 + 466.5
SLOPE 1.8706 = 3.2552E-02 - 3.0930E-02 + 3.1176E-02
OFFSET 1.1000 = 0. - 0. + 0.
Function 2: Gaussian (sigma)
AREA 1724.3 = 53.89 - 53.91 + 54.08
MEAN 1.8550 = 7.2797E-04 - 7.3486E-04 + 7.1608E-04
SIGMA 1.84211E-02 = 7.0585E-04 - 6.8615E-04 + 7.1394E-04
Fitting 'dm' and $M_{D^{*+}}$ in $D^0 \rightarrow K_S\pi^0$

MINUIT χ^2 Fit to Plot

30.60

File: ver4.mn.hbk
Plot Area Total/Fit: 1998.0 / 1998.0
Func Area Total/Fit: 1955.1 / 1955.1

χ^2: 42.8 for 48 - 10 d.o.f.,
C.L.: 27.1%

<table>
<thead>
<tr>
<th>Errors</th>
<th>Parabolic</th>
<th>Minos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function 1: Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORM</td>
<td>2.01596E+08</td>
<td>6.8983E+08 ± 0.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>0.13957</td>
<td>0.</td>
</tr>
<tr>
<td>POWER</td>
<td>1.3495</td>
<td>0.4976</td>
</tr>
<tr>
<td>COEFF1</td>
<td>230.39</td>
<td>197.8</td>
</tr>
<tr>
<td>COEFF2</td>
<td>-543.33</td>
<td>7720.</td>
</tr>
</tbody>
</table>

Function 2: Two Gaussians (sigma)

AREA	1421.1	43.60	43.72	0.
MEAN	0.14458	4.3382E-05	4.6649E-05	+ 4.1544E-05
SIGMA1	2.85123E-04	4.5437E-05	4.4493E-05	+ 4.9198E-05
SIGMA2	0.74016	8.7299E-02	0.1019	+ 7.8818E-02
SIG2/SIG1	2.2503	0.2944	0.2743	+ 0.3320

MINUIT χ^2 Fit to Plot

41.60

File: ver4.mn.hbk
Plot Area Total/Fit: 1668.0 / 1668.0
Func Area Total/Fit: 1635.1 / 1635.1

χ^2: 33.6 for 40 - 7 d.o.f.,
C.L.: 43.6%

<table>
<thead>
<tr>
<th>Errors</th>
<th>Parabolic</th>
<th>Minos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function 1: Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORM</td>
<td>2.86341E+05</td>
<td>6.1596E+05 ± 0.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>1.9430</td>
<td>0.</td>
</tr>
<tr>
<td>POWER</td>
<td>0.81789</td>
<td>0.3691</td>
</tr>
<tr>
<td>COEFF1</td>
<td>-3.0453</td>
<td>40.70</td>
</tr>
<tr>
<td>COEFF2</td>
<td>-341.36</td>
<td>255.9</td>
</tr>
</tbody>
</table>

Function 2: Gaussian (sigma)

AREA	977.34	160.9	0.	
MEAN	2.0071	1.1537E-03	9.3440E-04	+ 6.6188E-04
SIGMA	1.30777E-02	1.2344E-03	0.	
SIG2/SIG1	2.2503	0.2944	0.2743	+ 0.3320
$D^0 \rightarrow K_L\pi^0$

Reconstruction Procedure:

- π^0 made from mdstpi0
- π^+ made from mdstcharged
- K_L and D^0 made from mdstklong and π^0
 - D^0 and K_L mass constrained
 - imaginary solution for p_{K_L} rejected
- D^{*+} made from D^0 and π_s^+
 - where $\pi_s^+ =$ all π^+, no veto on π^+
 - signal region is defined by $\pm 3\sigma$ of mean in $M_{D^{*+}}$ distribution
Reconstructing $D^0 \rightarrow K_L \pi^0$
$D^0 \rightarrow K_L \pi^0$ continues...

Fitting Procedure:

- $M_{D^{*+}}$ distribution before mass cut fitted as follows

 - background fitted to threshold function
 offset fixed at 2.0040 GeV

 - signal fitted to Gaussian
 defines signal region for $\epsilon_{D^{*+}}$
Fitting $M_{D^{*+}}$ in $D^0 \rightarrow K_L \pi^0$

<table>
<thead>
<tr>
<th>Errors</th>
<th>Parabolic</th>
<th>Minos</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORM</td>
<td>1.06971E+07 ± 7.9746E+06 - 5.5999E+06 + 1.1896E+07</td>
<td></td>
</tr>
<tr>
<td>OFFSET</td>
<td>2.0040 ± 0. - 0. + 0.</td>
<td></td>
</tr>
<tr>
<td>POWER</td>
<td>0.58492 ± 0.1047 - 0.1037 + 0.1058</td>
<td></td>
</tr>
<tr>
<td>COEFF1</td>
<td>-61.353 ± 37.18 - 36.66 + 36.99</td>
<td></td>
</tr>
<tr>
<td>COEFF2</td>
<td>191.03 ± 1135. - 1123. + 1112.</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>1793.2 ± 111.2 - 109.0 + 113.8</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>2.0100 ± 5.0858E-05 - 5.0548E-05 + 5.1036E-05</td>
<td></td>
</tr>
<tr>
<td>SIGMA</td>
<td>1.5723E-03 ± 6.2098E-05 - 6.0558E-05 + 6.3878E-05</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing the fit of $M_{D^{*+}}$ in $D^0 \rightarrow K_L \pi^0$.](image)
$D^0 \rightarrow K_S \pi^+ \pi^-$

Reconstruction Procedure:

- π^\pm made from mdstcharged
- K_S made from mdstvee2
 - track and kind cut
 - mass cut, $\pm 3\sigma$ of mean in M_{K_S} distribution
- K^*- made from K_S and π_c^-
 - where π_c^- is π^- with K_S veto on it
 - mass cut, $\pm 3\sigma$ of mean in M_{K^*-} distribution
- D^0 made from K^*- and π_c^+
 - where π_c^+ is π^+ with K_S veto on it
- mass cut, $\pm 3\sigma$ of mean in M_{D^0} distribution

- D^{*+} made from D^0 and π_s^+
 - where π_s^+ is π^+ with K_S and D^0 veto on it
 - signal region is defined by $(0.143 < dm < 0.148)$
Reconstructing $D^0 \rightarrow K_S\pi^+\pi^-$

![Histograms showing distributions for K_S mass, K^* mass, D^0 mass, and D^0 mass after mass cut.](image)
Reconstructing $D^0 \rightarrow K_S \pi^+ \pi^-$ continues....
Fitting Procedure:

- M_{K_S} distribution before mass cut fitted as follows
 - background fitted to 1st order polynomial
 offset fixed at 0.470
 - signal fitted to Gaussian

- M_{K^*} distribution before mass cut fitted as follows
 - background fitted to threshold function
 offset fixed at 0.6400
 - signal fitted to Gaussian
 mean fixed at 0.89166 GeV, PDG mass of K^*

- M_{D^0} distribution before mass cut fitted as follows
- background fitted to first order polynomial
 offset fixed at 1.8400
- signal fitted to Gaussian

• 'dm' distribution before cut fitted as follows
 - background fitted to threshold function
 offset fixed at \(M_{\pi^+} = 0.13957 \text{GeV} \)
 - signal fitted to double Gaussian
 difference in mean fixed to zero
 defines signal region for \(\epsilon_{D^{*+}} \)

• \(M_{D^{*+}} \) distribution before mass cut fitted as follows
 - background fitted to threshold function
 offset fixed at 1.9960 GeV
 - signal fitted to Gaussian
Fitting M_{KS}, $M_{K^{*-}}$ and M_{D^0} in $D^0 \rightarrow K_S^{0} \pi^+\pi^-$
Fitting 'dm' and $M_{D^{*+}}$ in $D^0 \rightarrow K_S \pi^+ \pi^-$

MINUIT χ^2 Fit to Plot 40&0

- File: ver3.mn.hbk
- Fit: 3
- Plot Area Total/Fit: 1795.0 / 1795.0
- Func Area Total/Fit: 1755.6 / 1755.6
- χ^2: 39.9 for 48 - 9 d.o.f., C.L.: 43.1%

<table>
<thead>
<tr>
<th>Errors</th>
<th>Parabolic</th>
<th>Minos</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORM</td>
<td>32631. ± 1.1473E+05</td>
<td>- 0.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>0.13957</td>
<td>- 0.</td>
</tr>
<tr>
<td>POWER</td>
<td>0.16477 ± 0.4849</td>
<td>- 0.</td>
</tr>
<tr>
<td>COEFF1</td>
<td>236.98 ± 236.4</td>
<td>- 0.</td>
</tr>
<tr>
<td>COEFF2</td>
<td>-17696. ± 1.0468E+04</td>
<td>- 0.</td>
</tr>
</tbody>
</table>

Function 2: Two Gaussians (sigma)
- AREA: 1405.7 ± 42.96 - 42.85 + 42.96
- MEAN: 0.14551 ± 1.3936E-05 - 1.3880E-05 + 1.3915E-05
- SIGMA1: 2.80317E-04 ± 4.1506E-05 - 3.7736E-05 + 4.2909E-05
- AR2/AREA: 0.57985 ± 9.9511E-02 - 0.1058 + 9.0990E-02
- DELM: 0. ± 0. - 0. + 0. |
- SIG2/SIG1: 2.4963 ± 0.2360 - 0.2210 + 0.2478

MINUIT χ^2 Fit to Plot 51&0

- File: ver3.mn.hbk
- Fit: 3
- Plot Area Total/Fit: 1571.0 / 1571.0
- Func Area Total/Fit: 1542.3 / 1542.3
- χ^2: 26.8 for 30 - 7 d.o.f., C.L.: 26.6%

<table>
<thead>
<tr>
<th>Errors</th>
<th>Parabolic</th>
<th>Minos</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORM</td>
<td>-21.181 ± 190.4</td>
<td>- 0.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>1.9960</td>
<td>- 0.</td>
</tr>
<tr>
<td>POWER</td>
<td>12.833 ± 1.796</td>
<td>- 0.</td>
</tr>
<tr>
<td>COEFF1</td>
<td>3881.4 ± 2.8350E-02</td>
<td>- 0.</td>
</tr>
<tr>
<td>COEFF2</td>
<td>-74846.</td>
<td>- 0.</td>
</tr>
</tbody>
</table>

Function 2: Gaussian (sigma)
- AREA: 1550.5 ± 39.51 | - 0. | + 0. |
- MEAN: 2.0104 ± 1.3619E-04 | - 0. | + 0. |
- SIGMA: 5.22432E-03 ± 1.1992E-04 | - 0. | + 0. |
\[D^0 \rightarrow K_L \pi^+ \pi^- \]

Reconstruction Procedure:

- **\(\pi^\pm \)** made from mdstcharged
- **\(K_L, K^{*-} \) and \(D^0 \)** made from mdstklong, \(\pi^+ \) and \(\pi^- \)
 - \(D^0 \) and \(K_L \) mass constrained
 - imaginary solution for \(p_{K_L} \) rejected
 - \(K^{*-} \) made from \(K_L \) and \(\pi^- \)
 mass cut, \(\pm 3\sigma \) of mean in \(M_{K^{*-}} \) distribution
 - \(D^0 \) made from \(K^{*-} \) and \(\pi^+ \)
- **\(D^{*-} \)** made from \(D^0 \) and \(\pi_s^+ \)
 - where \(\pi_s^+ = \pi^+ \) with \(D^0 \) veto on it
 - signal region is defined by \(\pm 3\sigma \) of mean in \(M_{D^{*-}} \) distribution
Reconstructing $D^0 \rightarrow K_L \pi^+ \pi^-$
Fitting Procedure:

- M_{K^*-} distribution before mass cut fitted as follows
 - background fitted to threshold function
 offset fixed at 0.6300 GeV
 - signal fitted to Gaussian
 mean fixed at 0.89166 GeV, PDG mass of K^{*-}

- $M_{D^{*+}}$ distribution before mass cut fitted as follows
 - background fitted to threshold function
 offset fixed at 2.0040 GeV
 - signal fitted to Gaussian
 defines signal region for $\epsilon_{D^{*+}}$
Fitting $M_{K^{*-}}$ and $M_{D^{*+}}$ in $D^0 \rightarrow K_L \pi^+ \pi^-$