WORK PLAN IN PROGRESS

Manmohan Dash

Virginia Tech

(26th May 2004)

OUTLINE

1. What Are We Trying To Measure?

2. Physics Analysis
 Calculating $N(K_L\pi)$
 Calculating $N(K_S\pi)$

3. Calibration Analysis
 Calculating $N(K_L\pi\pi)$
 Calculating $N(K_S\pi\pi)$
What Are We Trying To Measure?

- We are measuring the following asymmetry in the decay of D^0

$$ A = \frac{\Delta \Gamma}{2 \Gamma_{av}} $$

$$ = \frac{(\Gamma_{D^0 \rightarrow K_S^0 \pi^0}) - (\Gamma_{D^0 \rightarrow K_L^0 \pi^0})}{(\Gamma_{D^0 \rightarrow K_S^0 \pi^0}) + (\Gamma_{D^0 \rightarrow K_L^0 \pi^0})} $$

$$ = \frac{\Delta B}{2 B_{av}} \text{ as branching fraction } B_{K_L \pi} \propto \Gamma_{K_L \pi} \text{ and so on} $$

$$ = \frac{N(K_L \pi) - N(K_S \pi)}{N(K_L \pi) + N(K_S \pi)} $$

- detector efficiency corrected by using decay $D^0 \rightarrow (\bar{K}^0 \pi)\pi$ via $K^*-\pi$

$$ A = \frac{\frac{N(K_L \pi)}{\epsilon_{K_L}} - \frac{N(K_S \pi)}{\epsilon_{K_S}}}{\frac{N(K_L \pi)}{\epsilon_{K_L}} + \frac{N(K_S \pi)}{\epsilon_{K_S}}} $$

$$ = \frac{N(K_L \pi) / N(K_L \pi \pi) - N(K_S \pi) / N(K_S \pi \pi)}{N(K_L \pi) / N(K_L \pi \pi) + N(K_S \pi) / N(K_S \pi \pi)} $$

- So we have the following numbers to calculate for this analysis

$N(K_L \pi), N(K_S \pi), N(K_L \pi \pi), N(K_S \pi \pi)$
Physics Analysis, calculating $N(K_L\pi)$

- Create MC samples for $D^0 \rightarrow K_L^0\pi^0$ and $D^0 \rightarrow K_S^0\pi^0$
 - Signal MC

 \[
e^+e^- \rightarrow c\bar{c} \rightarrow \text{charm fragmentation} \rightarrow \text{single } D^{*+} \text{ selection} \rightarrow \text{decay table}
 \]
 - Generic MC

 \[
e^+e^- \rightarrow c\bar{c} \rightarrow \text{charm fragmentation} \rightarrow \text{allow generic decay ? ? ?}
 \]

- Reconstruct $D^0 \rightarrow K_L^0\pi^0$ (Signal MC)

 K_L^0by D^0 mass constraint, $E_{ECL} > 300$MeV
 - for excluding K and π decays in flight
 D^0by $x_p > 0.6, -0.95 < \cos(\angle D^0k^0) < 0.2$
 - for excluding combinatorics, random pion backgrounds

 tag by $D^{*+} \rightarrow D^0\pi^+$ look at D^{*+} mass distribution

 fit signal and background (to be crosschecked with data later)

- Reconstruct $D^0 \rightarrow (\text{pseudo } K_L^0)\pi^0$ for control

 Signal MC of $D^0 \rightarrow K_S^0\pi^0$ is used here
 do a resolution study of K_S^0andK_L^0

 reconstruct K_S^0 by D^0 mass constraint
 K_S^0 direction resolution smeared to match K_S^0 resolution
Physics Analysis, calculating $N(K_L \pi)$

- Analyse generic MC sample to study the backgrounds
 - reconstruct $D^0 \to K_L^0 \pi^0$
 - tag decays present in sample by evtgen, plot their mass distribution
 - (to get no of background events for each decay and their spectrum)
 - ??? is it correct/useful ???
 - study the event topology to get the potential background sources
 - ??? device cuts and optimise ???

- Skim data for $D^0 \to K_L^0 \pi^0$
 - reconstruct $D^0 \to K_L^0 \pi^0$, fit signal, background in D^* mass
 - obtain $N(K_L \pi)$ and cross-check with signal MC
Physics Analysis, calculating $N(K_S\pi)$

- Reconstruct $D^0 \to K_S^0\pi^0$ (Signal MC)
 K_S^0 from mdst-vee2, apply track quality cuts
 same cuts on D^0 etc as in case of $D^0 \to K_L^0\pi^0$
 fit signal and background for crosschecking with data later

- Analyse generic MC sample to study the backgrounds
 same procedure as in case of $D^0 \to K_L^0\pi^0$

- Skim data for $D^0 \to K_S^0\pi^0$
 reconstruct $D^0 \to K_S^0\pi^0$, fit signal, background in D^{*+} mass
 obtain $N(K_S\pi)$ and cross-check with signal MC
Calibration Analysis, calculating $N(K_L\pi\pi)$

- Signal and Generic MC for $D^0 \to K_L\pi\pi$ and $D^0 \to K_S\pi\pi$ via K^{*-} reconstruct $D^{*+} \to D^0\pi^+, D^0 \to K^{*-}\pi^+, K^{*-} \to K_L\pi^-$ (signal MC) apart from cuts for D^0 and K_L etc invariant mass cut on K^{*-} tag by $D^{*+} \to D^0\pi^+$ look at D^{*+} mass distribution fit signal and background (to be crosschecked with data later)

- Reconstruct $D^0 \to (\text{pseudo } K_L^0\pi)\pi$ for control use results from resolution study as earlier

- Do a background study in the generic MC sample as earlier device and optimise cuts

- Skim data for $D^0 \to K_L\pi\pi$
 reconstruct $D^0 \to K_L\pi\pi$, fit signal, background in D^{*+} mass obtain $N(K_L\pi\pi)$ and cross-check with signal MC
Calibration Analysis, calculating $N(K_S\pi\pi)$

- Reconstruct $D^{*+} \rightarrow D^0\pi^+$, $D^0 \rightarrow K^{*-}\pi^+$, $K^{*-} \rightarrow K_S\pi^-$ (signal MC)
 invariant mass cut on K^{*-}
tag by $D^{*+} \rightarrow D^0\pi^+$ look at D^{*+} mass distribution
 fit signal and background and crosscheck with data later

- Do a background study in the generic MC sample as earlier device and optimise cuts

- Skim data for $D^0 \rightarrow K_S\pi\pi$
 reconstruct $D^0 \rightarrow K_S\pi\pi$, fit signal, background in D^{*+} mass
 obtain $N(K_S\pi\pi)$ and cross-check with signal MC